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Foreword or Apologia

This is an unfinished work. It is the text
of what was to be the first chapter of a
Ph.D., abandoned some years ago. It contains
some ideas which 1 and others, more
academically authoritative than me, think
could be useful in the history and philosophy
of mathematics. I intend to delve further
into some of the directions outlined here,
but not all. I am publishing the text as it
stands in the hope that some other people may
take up and investigate further some of the
possibilities suggested. I would be very
pleased to get feedback from anyone
interested.

I apologise for the incompleteness of the
references. To recover them would take more
time than my familial responsibilities and my
need to research further allow me.

With respect to the content of the text, I
consider the most important ideas to be in
section 4. Section 3 is included because it



sets the scene for section 4. Sections 1 and
2 are included Dbecause some mathematical
historians who have read this work find them
interesting. To be really up-to-date, these
latter two sections should be revised in the
light of Philip Kitcher's The Nature of
Mathematical Knowledge which appeared shortly
after I had given up working for a Ph.D.,
but, as I have explained, I have neither the
time nor motivation now to embark on such a
task.



1. Introduction

I originally had two main motivations in my
research. One was a concern with the
phenomenon of the integers. I intended to
examine how and why attempts to investigate
the qualities of the integers gradually 1lost
importance after the discovery of the
existence of irrationals, and to examine what
meaning the essential concern of the
Pythagoreans with the integers might have for
us today. This led on to considerations of
the changes in the concept of number.

The other motivation was a certain
dissatisfaction with the predominant trends
in current history and philosophy of
mathematics, in that they fail to adopt a
critical perspective on present-day
mathematics and are thus unable to play an
active part in determining the telos of
mathematical development, i.e. to offer con-
structive suggestions as to possible and
desirable directions for mathematics. I felt
that a form of synthesis, historical
philosophy or philosophical history (as
suggested by Lakatos and exemplified in his
Proofs and Refutations) might offer a real
possibility of such a perspective. Certainly
contemporary mathematical histories are not
philosophically oriented in a presently
active sense, and contemporary mathematical
philoso%bies define themselves ahistor-
ically.



In this investigation, whilst beginning to
examine these two initially distinct topics,
I hope to indicate that they are, in fact,
linked; that the attitudes and implicit
assumptions which underlie current historical
and philosophical perspectives are rooted in
those that have governed the development of
our conceptualisation of number and the
perception of the integers.

Before going into more detail in Jjustifying
and amplifying the above statements and
examining their implications, I would 1like to
outline an argument for a historical
philosophical perspective. (The irony of the
form of my argument will shortly be
apparent. )

1) Mathematical concepts and constructs
are historically situated.

This statement does not conflict
with a Platonist wview of mathe-
matics; it concerns mathematical
means, not its telos.

To deny this statement would imply
the belief that there had been no
real change in mathematics (only a
change in language ), not a view
generally maintained by mathe-
maticians or metamathematicians.

2) We have choice as to how mathematics
is to develop.

The contrary belief implies some
kind of determinism.



Either a) behaviourist, i.e. we are
out of our own control.

or b)
'mystical' platonist, i.e.
mathematical truths are

absolute and eternal;
mathematicians do not
choose what they do

mathematically, they can
only try to follow their
intuition as a guide to
the truth.

If we accept 1 and 2, 1i.e. do not accept 2a
or 2b, then we are presented with the
gquestion:

3) In what directions do we think it
desirable and possible for
mathematics to develop?

This contains two gquestions:
3a) What are our criteria for

deciding in what directions we wish
mathematics to develop?

What alternative aims, modes,
methods are possible for mathe-
matics?

This problematic is ignored in contemporary
mathematical philosophy, in that none of the
mathematical schools concern themselves
directly with the development of mathematics.
For all their differences, the main debate
and praxis is concerned with what constitutes
mathematical rigour, almost the opposite



approach; given a body of mathematical
knowledge, what can be called certain?

Since this problematic has not been
explicitly, directly confronted as such
before, we are not clear about the directions
and aims implied in present mathematical
praxis. So we have a preliminary question:

4) How can we clarify the underlying
intentional meaning structure,
contained in contemporary mathe-
matics?

Question 3a obviously involves many

guestions including that of the social role
of mathematics, one which has mostly been
avoided in the present day, glthough it was
considered in the Greek era. I shall not
attempt to deal with it here.

Questions 3b and 4 present an extremely
difficult task, since, as Husserl points out,
our language, understanding and perception
are permgated with the 'sedimentation' of
history. To begin to extricate ourselves
from this mesh, we must re-examine the
history which created it - both the steps
which led to the present mathematical
configuration, and the alternatives that were
rejected. Although it is not possible to know
definitively what was entailed in past
possibilities, it is sufficient if we can
begin

A) to appreciate +the nature of the
' contingent element in alternative



mathematical projects,

B) to understand why, in a given hist-
orical context, alternative projects
were not adopted,

and hence

C) to understand the implications of
the projects that were favoured.

Any significant progress here might enable us
to tackle a perhaps more controversial
project:

D) to re-evaluate whether some
previously rejected projects might
have some meaningful content for
mathematics now.

For examples of such projects and
controversies I shall largely draw on Greek
and Renaissance/Reformation periods, which I
see as crucial in determining the content and
modes of our present mathematics. In par-
ticular, I regard the decline of Pythagorean
number theory, 1in status and (as I shall
argue) in 1living content, as one of the
earliest examples of choice in the history of
mathematics, and extremely valuable to
examine.



First, I shall look at the current state of
the history of mathematics, in support of my
contention that its lack of critical
perspective produces serious weaknesses. It
will be necessary to alternate between
philosophical-historical concerns and those
of number for a while: at times it may seem
as though the windings and turnings of my
argument have lost sight of their goal. But
in fact I am throughout concerned with what I
see as the contemporary impasse of
mathematical history and philosophy: and
further concerned to show that this impasse,
when traced back to its historical origins,
turns out to be deeply related to the
integers.



2. Mathematical History

Most research into the history of mathematics
has attempted to understand the past from the
perspective of contemporary formulations and
concepts. This approach is valuable in
picking out threads of continuity; but it
also leads to misinterpretations and
distortions of the past. A misleading
emphasis is given to conceptual developments
which can be seen as steps leading to present
formulations, whilst those perspectives which
in fact do not flow into the present are

treated, in effect, either as pre-
mathematical or non-~mathematical, as
'anticipations' or ‘'false trails’, thus

obscuring not only the internal phenomenology
of the past, but also the real nature of
mathematical development.

Such a Whig theory of mathematical history -
one which regards present concepts as the
logically inevitable apex of mathematical

investigation - is basically ahistorical: it
makes it hard or impossible +to see current
mathematics, like all its earlier
equivalents, as a moment in an ongoing
historical process, where by no means

inevitable choices are constantly being made
. . . 2
between alternative projects and paradigms.
It is for contingent, not absolute, reasons
that various historical projects have gone to
the wall; and there are certainly senses in
which the array of problems tackled by
mathematics is historically arbitrary.

Because historical premises are not generally
explicated, the underlying premises are not



readily seen. When one does articulate the
approach which most historians of mathematics
have adopted, it becomes apparent that, in
fact, a model of deductive logic (an element

of contemporary mathematical theory) is
imposed upon history on two distinct 1levels:
on one level, clearly, in the Whig
perspective outlined, which interprets
earlier views and concepts as 'goodies' or
'paddies', true or false, right or wrong,

according to whether they are perceived as
being close to, or far from current views and
concepts; on another level (where the
implicit extension of an intramathematical
attitude is perhaps not SO immediately
obvious), in the perspective of historians -
sometimes consciously attempting to avoid the
Whig distortions - who seek the true history,
the real reasons for events etc., and fail to
come to terms with the historical
situatedness of their own perspective.

Certainly, in both these cases the picture is
shaded, not sharp black-and-white, a
multivalent truth function rather than a
bivalent one. But the fundamental point is
that a measure (albeit fuzzy) is imposed upon
history: in the first case it is actively
imposed upon historical phenomena; in the
second, it plays a more passive role with
respect to historical interpretations.

The historical roots of the black/white view
could be said to lie in Parmenides'
philosophy. If we do not accept the
Parmenidean conclusion, but rather believe
that change is real, then we see that, as
D.L.Miller says, 'the emergent gives rise to



a new perspective, a new past' - what seems
plausible or important in a historical
explanation changes as our mental frameworks
change. This does not mean that history must
necessarily act as a passive support for the
status quo; it can provide a source of
alternative perspectives, revealing hidden
assumptions in those currently held. On
examining the paths that led to our
conceptualisations we may find places where
the ideas that prevailed, did so not by
transcending the former contradictions, but
for contingent reasons, and re-examination of
these issues may lead to new resolutions,
other possible directions.

The 'sedimentation' of history permeates our
attitudes and understandings to such an
extent that reality is now seen as having an

exact mathematical nature; it has been
forgotten that this was a superstructure
imposed as a hypothesis, because th?

hypothesis has proven SO successful.

Certainly the technical usefulness of our
current mode of mathematics can not be
denied. It has provided a wide variety of
models that can accommodate quantitative
change (one of the major advances from the
Greek stage) and so serve for predictive
scientific theories; but this was the
original intention. Although it may be argued
that our pure mathematics does not share this
goal explicitly, nevertheless it has
developed within conceptualisations defined
by scientific terms, and even, at a distance,
by technological concerns - the demand for
the calculus which arose 6from ballistics
problems is just one example . Obviously we
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have to examine more closely the areas and
ways in which, for instance, the
philosophical requirements of the Greeks are
embedded in mathematical concepts and
attitudes, as well as the metaphor
transference (e.g. from +the predominantly
mechanical subject matter of the Renaissance)
mediated through the seemingly neutral,
abstract mathematical function. But we must
recognise that the success it has achieved in
its chosen direction in no way validates its
being the only direction possible for
advance. We ¢an draw an analogy with someone
who wishes to leave a town: he is free to go
in any direction; having journeyed, he may,
at any time, measure his progress in terms of
his distance from the starting point, but
this offers no means for qualitative
comparison between the place that She has
reached and the other alternatives.

There 1is the possibility of such a
gualitative evaluation if we try +to recover
the mathematical problems of the past as they
were formulated and understood in their own
context, examining not only the ideas that
have survived into +the present, but also
those that have been abandoned. We can then
begin to understand the dynamics of
mathematical development and to obtain a more
critical perspective on contemporary
mathematics. By attempting to appreciate the
meanings and implications of concepts and
attitudes which persisted into the present
mathematical corpus, we begin to have a
context in which to discern its underlying
intentional meaning structures as well as the
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possibility of examining the implications
which alternative directions might have for
us now.

I see this task of extricating ourselves,
distancing ourselves from our ideological
context as an orientation; I do not consider
that the phenomemological 'epoche' admits of
an absolute consummation, since that, 1ike
the historical perspectives already
discussed, would imply transcending our
historical situation. This is the goal that
Klein and Husserl in fact set themselves. For
Klein the final task arising from the attempt
to reactivate the 'sedimented history' of the
'exact' nature is 'the rediscovery of the
prescientific world and its +true origins'.

The situation envisaged is, 1like that of the
Cartesian doubt, not a real doubt, but a
pretence; we can not actually put ourselves

into the pre-knowledge situation. The
attempt to come closer to understanding the
motivations and meanings (implicit and

explicit) contained in earlier mathematical
decisions must be seen in the context of an
attempt to understand our own position.

Husserl was concerned to uncover the
'essential' history of mathematics and thus
the essential nature of mathematics. For him,
to understand something is a positive act, a
living moment; so one of the basic questions
which he asks about mathematical development
is: how could it be possible to relive all
the moments of understanding that are
necessary in a mathematical proof in order to
progress to further knowledge? Since he sees
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knowledge as real, certain only in the moment
of its realisation ('Verwirklichung'), and it
is impossible simultaneously to realise all
the elements in a proof, (which would entail
realisation of the complete reductio), so he
creates another category of thought to cover
this case in mathematics, namely thought
which has 0 the potentiality of being
reactivated. The use of reactivatable
elements 1in a proof would guarantee the
soundness (reactivatability)10 of the whole,

so that a wvast edifice of mathematical
knowledge could be built up from certain
basic elements, provided that each step in
the construction satisfied the criterion of
reactivatability.

He does not consider the question which 1is
prime for Lakatos (which has been put by
mathematicians through the ages), namely, how
does one arrive at mathematical concepts or
discover (or create) new theorems in the
first place - a stage which 1is necessarily
prior to any attempt at proof. Focussing on
mathematical development rather than
certainty, Lakatos advocated a different
attitude to the concept of proof from the
present norm, and from Husserl's idealisation
which is in fact structurally the same as the
norm but projected onto a deeper meaning
level. Rather than seeing the attempt to
prove a theorem as the attempt to establish
it beyond doubt, in which case the appearance
of counterexamples is regarded primarily as a
failure of the theorem (or sub-lemmas),
Lakatos was concerned not with an absolute
result, but with the process involved in
attempts to prove a theorem. By setting out
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the various steps of the argument, by looking
for local and global counterexamples (i.e.
counterexamples to the sublemmas, and
counterexamples to the principal theorem),
the hidden assumptions in the concepts used
may be revealed, opening the way to
realisation of more general concepts
underlying those initially considered. Proof
attempts and counterexamples thereby act as
two poles in a continual process of improving
conjectures, refining our mathematical ideas.

In fact Husserl's initial analysis, without

the somewhat ad hoc creation of
'reactivatability', is a valid approach to a
phenomenology of mathematics which

complements Lakatos' suggested methodology.
It is because it is not possible to carry out
a simultaneous reactivation of all the steps
involved in a mathematical argument, that all
proofs are temporary and non-absolute. They
are necessarily partial, since the limits of
the definitions of concepts can not become
clear until they are seen to b%'contained in
deeper, more general concepts. Because it
is impossible to apprehend a proof in its
totality back to the basic premises, attempts
to reactivate certain elements of a proof, in
their context or in another wider context,
can reveal new ideas that were obscured by
implicit assumptions in the original proof.

By following the development of a geometrical
problem into topological concepts, Lakatos
showed that the process he recommended as a
methodology was that which actually took
place over the course of history - but
unconsciously (and in fits and starts) since,
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in keeping with the prevalent attitude to
proof, counterexamples were regarded as
'monsters', causing mathematical reactions
which he characterised as 'monster-barring',
'monster-adjusting' etc., rather than
stimulating careful re-examination of the
steps of the proof +to discover precisely
which steps or concepts were called into
gquestion in each case.

Lakatos' suggestion was that this process of
improving conjectures should be adopted
consciously as a methodology of mathematical
development. In effect, he argues that
mathematics already has a methodology 1latent
within present forms; it is only the rigid,
static interpretation of these forms which
has prevented perception of the essential,
complementary dynamic that they contain. It
requires only a fluid rather +than a static
attitude to proof in order to appropriate and
activate this methodology (to work with it
rather than against it).

Lakatos' critique focuses on attitudes to the
concept of proof which determine reactions to

the occurrence of counterexamples, thus
affecting the development of any given
problematic in mathematics. 1In a similar way
to Lakatos, I am concerned with underlying
attitudes which have influenced the
development of different modes of
mathematics.

The way in which most mathematical historians
regard as deviants earlier mathematical
projects which do not translate or conform to
the current, conventional mathematical ideas,
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is similar to the view of counter examples
as monsters ; the insidious extrapolation of
the mathematical-logical view of
contradiction from static to temporal
phenomena manifests itself in the inability
to come to terms with real change.

Szabo suggests that the reductio ad absurdum
form of proof which replaced earlier more
illustrative forEF, was adopted from
Parmenidean logic.”™™ Whether or not this was
the case (his argumentation is convincing)
the two forms are effectively the same. This
shift in the mode of proof results in a move
away from the intuitive reasoning which 1led
to the conjecture initially.13 This
particularly affectsl the proofs of number
theoretical theorems™, which is surely a
factor in the subsequent growth of geometry
and the impoverishment and degeneration of
arithmetike. I shall argue that this was also
the beginning of the notion of mathematics as
being more essentially concerned with
guantity than qualities.

Obviously these questions require a much
fuller investigation. Here I only wish to
suggest that at the wvery inception of the
mathematico-logical method which was to prove
SO powerful in the development of
mathematics, it brought about changes which
profoundly affected the telos of mathematics;
the implications of some o0f these changes
were only articulated much later, and it was
still later before some of the inherent
limitations began to be realised and the
gquestion as to the limits of va%idity (and
usefulness) of the method recurs.
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Husserl and Lakatos are important, because
they open up debates in little touched areas
of mathematical philosophy: Husserl's
discussion zrelates to the ontology of
mathematical knowledge; Lakatos is concerned
with the methodology of mathematical
development. (The 1latter's study, using
historical research to offer a constructive
critique of current mathematics and
mathematical philosophy, also serves as a
relevant example of the results possible
through combining historical investigation
and philosphical analysis.) I think it can be
shown that Husserl and Lakatos, via different
paths, in fact enter one space, a
philosophical area peculiar to mathematics
with its unique relation to the life-world.

Now, I shall return to the more particular
focus of my inquiry: the integers and the
concept of number.
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3. Number theory:
towards a selective history

In this section I shall be dealing mostly
with topics which arose out of my interest in
the integers; but not directly with the
integers themselves. As necessary
background, therefore, I shall insert here a
short eulogy to natural number.

I have long been intrigued by the dual nature
of the integers. In the first place they are
our archetype of a discrete well-ordering.
(It is this aspect which is taken as their
defining characteristic in attempts to
'found' the integers on various set theories,
i.e. to construct set theoretic models that
functionally approximate to the natural
numbers.) They appear as a monotonous
repetition of a single relationship ad
infinitum: 1<2<3<4..... ,vVery useful for
counting sheep, but scarcely exciting.

And yet as we look closer - as our range of

numerical operations expands - we perceive
more and more complex structures generated by
this seemingly banal series: more varied

relationships between the numbers, in terms
of which we begin to appreciate the integers
as individuals with different
characteristics. As the range of structures
that we are able to identify increases in
diversity and complexity; as, where we once
saw undifferentiated extension, we now see a
finer, more subtle web of interlaced and
distinct entities; so we see this web to have
been 1latent in our primary, deceptively
simple sequence. When an ever finer grain
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emerges at every increase in our power of
definition - +the subtlety of +the number
series seeming always one step ahead of our
subtlety - how can we avoid the induction of
the image of the natural numbers as the
eternal source and 1limit of our pattern-
making?1 With the primes, perhaps, as
perpetual jokers, continually escaping the
webs we weave.

Well, ves, I am in love with the natural
numbers; and, as I hope will emerge in this
essay, I see the real number 1ine and the
complex plane as natural extensions of the
integers - extensions whose developments and
properties seem at times, 1like the paths in
Alice's looking-glass garden, to 1lead away
from their source, but always finally return
to it.

When we 1look at contemporary mathematical
work on the integers, although various
mathematicians have commented on the integers
in this vein, very little actual mathematical

work corresponds to this attitude. There
are two main areas of contemporary
mathematical work on the integers:

foundational studies and number theory.

In the former, the approach adopted to the
integers is that it is necessary to ;found'
them in some form of set theory. This
results in a model of the integers as a
class, taking their most obvious attribute,
the discrete well-ordering, as the defining
characteristic, and (since the stress is on
the homogeneous aspect of their nature)
reveals nothing about the complex



19

interrelations of the integers (i.e. about
the integers as individuals), but then that
is not its aim.

Thus foundational work has a more clearly
articulated aim than contemporary number
theory: to ensure secure foundations for the
mathematical edifice. It is perhaps partly
for this reason that it enjoys a higher
status; even though the strong form of this
aim - that the system should be consistent
and complete, was shattered vyears ago by
Godel's theorem. Certainly foundational,
mathematico-logical concerns continue to
dominate mathematical philosophy. But I shall
argue that the driving force behind this
emphasis is an attitude which has haunted
mathematics and its meta-disciplines,
mathematical history and philosophy since
Parmenidean bivalent logic was incorporated
into mathematics as a guarantor of certanty.
Wittgenstein drew attention to it in Remarks
on the Foundations of Mathematics, where he
writes,

My aim is to alter the attitude to
contradiction and to consistency proofs.
Not to shew that this proof shews some-
thing unimportant. How could that be so?*

This attitude, which I am tempted to <call
'contradiction-phobia' is a fundamental block
that I consider we are in a far better
position to overcome now than in the Greek
era.



20

Needless to say, I feel that my interest in
the integers is closer to the other main
approach to the integers, via number theory,
which takes the integers as given and claims
to concern itself with the integers as
individuals, their characteristics and
interrelations. For this reason I wished to
examine how and why, since the time of the
Pythagoreans, number theory gradually
declined in status and, as I shall argue,
lost sight of its original telos, thus losing
touch with its living content, losing
wholeness, coherence; and to examine whether
there might be a way in which the essential
concern of the Pythagoreans could be
meaningful today.

For the Pythagoreans, number theory or
arithmetike was the basis of their
metaphysical science” - their monadology was

an attempt to discover the relationships of
the universe, which they originally believed
could be described totally in terms of
integers and ratios of integers. In their
mathematical work they both extended the
range of possible operations with numbers (in
geometry, theory of ratios etc.) and
simultaneously objectified the proper?ies of
the individual numbers which emerged . That
is to say, they were concerned +to develop
more complex structures which could
accurately describe the complicated phenomena
in the world, but not to lose sight of the
role which the integers played in these
developments. By naming the qualities,
properties which are the complementary result
of an operational pattern, an alternative
mode of describing it, it may prove possible
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to perceive relationships between these
properties themselves - i.e. another
mathematical structure - as, of course, has
proved to be the case with the properties
which the Pythagoreans abstracted:; these
relationships between the Pythagorean-derived
properties are still the foundation of number
theory today. It is possible gradually to
build up a more complete picture of each
individual integer in terms of its properties
- in which case, in whatever context one is
dealing with a particular integer, one's
awareness of its various attributes may yield
simultaneously a new understanding about the
nature of the context (thus revealing new
possibilities) and about the nature of the
integer, for example another attribute, or a
meta-relation of properties.

O0f course, I am not claiming that the
Pythagoreans consciously adopted this twofold
approach. In fact, whereas the current

mathematical approach emphasises operational
structures, the Pythagorean emphasis seems
originally to have been to discover qualities
of the integers - structural developments
serving as tools to this end. But the
resultant of their work was a balance between
these two aspects of development (the
dependence of the hypostatisation on
operational developments is not matched by
the inverse necessity) until the discovery of
the existence of irrationals.

There 1is a tendency to depreciate the
Pythagoreans' concern with the gqualities or
forms (eldn ) of the integers as number
mysticism, which I feel to be questionable.
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There are two interwoven strands in their
approach: the attempt to associate different

numbers and ratios with human
characteristics, moral attributes etc.; the
other we could retrospectively

(anachronistically) call defining equivalence
classes of integers (largely from the forms
which arose out of the figurate
representations). The former does not
invalidate the latter, as the attempts of the
Merton scholastics to quantify such entities
as love etc. do not invalidate their work on
dynamics. I shall not now consider the
gquestion of the possible importance of a
'mystical’' or 'metaphysical' perspective in
furthering the more 1limited mathematical
praxis - a question which has recurred with
regards to +the relation between Newton's
alchemical researches and his accepted
mathematical work. I only wish to point out
that the wusual connotation of 'mystical',
namely 'opposed to reason', does not seem to
apply to the Pythagoreans. Their transcendent
telos is rooted in a materialist perspective
- they are described by Aristotle, together
with the 'physiologists' as being of the
opinion that bei?g extends no further than
sense perception . Aristotle also stresses
that it is Plato who first makes number
separable from objects of sense, whereas ;or
the Pythagoreans the monads have magnitude’.

The discovery that there were 1lengths that
could not be expressed as integers or ratios
of integers meant that the Pythagorean
monadology was no longer tenable as a global
philosophy. The original concept of number
was maintained. The term 'number’
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('arithmos') was used only for the integers
greater than one; 'one' (the 'monas') was the
unit and unity, and was considered the
principle or beginning of number and as such
had a different status from the numbers which
it generated: 'two' was sometimes similarly
excluded from the realm of number, a
reasoning which stems from +the Pythagorean
identification of 'one' and the odd numbers

with 'limited’, opposing 'two' (or the
'dyad') a?d the even numbers as
'unlimited' ™, but this perception of 'two'

was not observed so strictly; fractions were
not considered to be numbers but solely as
ratios of integers, since the 'one' was
essentially indivisible.

Since the irrationals are not generated by
the 'one', nor do they reduce to ratios of
integers, they had no place in this system
(they did not even have a justified
operational framework until Eudoxus adapted
the theory of proportion +to this purpose),
and they were incorporated into mathematics
as geometrical magnitudes. There was now a
rigid ontological distinction between the
objects of study of arithmetike and geometry:
'number' is discrete, a multitude of
indivisible units; 'magnitude' is contin%pus,
an infinitely divisible spatial measure.

From this time on, the development of
geometry began to outstrip that of
arithmetike - before, with the figurate

representation of numbers and the theory of
ratios, geometry and arithmetike were closer
and shared developments; now their objects of
study were separate. It could be argued that,
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in any case, number theory had already
exhausted the possibilities for deriving
terminology from geometric forms. This is a
separate guestion; here, what is relevant is
that number was excluded from the study of
geometry; when the distinction was bypassed
in the Renaissance, the content of number
theory was already determined and the 1living
relationship between the study of the
integers and other mathematical areas was not
renewed.

From this time also, there was a shift from
illustrative demonstration to more strictily
logical proofs - relying more on reductio ad
absurdum. Szabd shows that for number
theoretical theorems, such indirect proofs
were sometimes substituted unnecessarily (in
terms of rigour& and perversely (in terms of
intuitive value ™). By the time of Euclid's
compilation, the appended diagrams served no
useful purpose, representing discrete numbers
by line segments.

Also in this period the study of number
itself was split into +two disciplines -
arithmetike and logistike. The dividing line
was never unequivocally established, but one
fairly common factor in the various versions
given is that arithmetike deals with the
'eide' - forms, kinds, species - of number;
whereas logistike deals with the 'hyle' of
numbers - the quantity, the 13materia1, the
amount +that they represent. The verbal
roots of their mathematical meanings are
respectively, 'arithmein' - to count, and
'logizmein' - to calculate. Disregarding for
the time being the original underlying
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reasons for this distinction, it is <clear
that it was wuncritically accepted by the
neoplatonists as a rigid separation (Plato's
suggested refinement of a further
classification into theoretical and practical
areas of each was not followed). The attempts
at clarifying the distinction consisted in
trying out different formulations for it and
adjusting the classifications of the existing
mathematical subject classification
accordingly, rather than questioning its
basic premises. So the study of the mnatures
of numbers and that of numerical operations
were seen as separate rather than as
complementary and mutually stimulating.

It is relevant that Diophantine analysis,
which was vitally important for the growth of
modern algebra and which, according to the
Platonist distinctions, should have appeared
as logistike, or theoretical logistic (when
Vieta takes it up, he reverts to this term)
in fact appeared in his Arithmetica, i.e.
Diophantus disregarded this distinction. He
also moved away from the mainstream in that
he did not use the Euclidean proof form and
he accepted fractions as numbers.

So it seems that we have extricated three
important factors contributing to the decline
in status and/or content of number theory in
the Greek era:

i) the 1rigid ontological distinction
between number and magnitude,

ii) the emphasis on logical proof
(particularly bivalent logic) as
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opposed to illustrative demon-
stration,

iii) the hypostatisation of the
arithmetike/logistike distinction.

Obviously these points require further
examination, but now to continue our whistle-
stop history of number theory. In the middle
ages interest in the integers was primarily
in terms of numbers as religious or moral
symbols; this is certainly of interest in
some respects but it is not directly relevant
to our inquiry at present. From the
Renaissance until the 19th century number
theory basically consisted of a range of
seemingly rather disparate (albeit
stimulating and important) problems, such as
the question of the distribution of primes,
Fermat's last theorem etc., that appeared to
have arisen almost accidentally in the course
of its history. It had become an area of
mathematics that lacked an inner sense of
direction and wholeness, having been content
to assume problems which involved terms which
figured in the Greek number theory: its only
claim to wholeness was the tenuous continuity
with the Greek discipline, which it
maintained by preserving the superficial
content of their concern - one might say that
number theory had petrified.

In the 19th century it gained coherence when
Gauss (who considered number theory to be the
gueen of mathematics) published his
Disquisitiones Arithmeticae which extended
the notion of integers +to include complex
integers, laying the ground for algebraic
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number theory. Analysis began to be used in
number theoretical proofs, giving rise to
analytic number theory. But the emphasis
continues to be on other branches of
mathematics acting as investigatory or proof
machinery with respect to number theoretical
problems whose roots go back to Pythagorean
arithmetike. Although analytic and algebraic
insights have extended and deepened the
structural vocabulary of number theory, it
has not appropriated the expanded field of
operations involving number (the extensions
of 1logistike) as a potential source for
developing its basic descriptive terminology
for the integers themselves.

The phenomenon of the occurrence of
particular integers in diverse mathematical
fields is not examined for +the significance
they may have in terms of a nature or
characteristic of the integer involved; even
though, particularly in algebraic geometry
and topology, such phenomena are increasing
and it is sometimes necessary to use
classical number theory in such proofs, still
the converse approach is not adopted.
Obviously this is now a formidable task, but
results seem to be converging in this
direction.

I think it would be worthwhile to consider
some perspectives on arithmetike as the
matrix for logistike, but now I shall make a
preliminary investigation of some of the
questions raised by the history of the
extension of the number concept.
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4: Changes in the concept of number

I shall now look at the way in which the
concept of number was extended in the
European rebirth of mathematics, some of the
underlying attitudes and their implications.
We have already briefly considered the Greek
conceptualisation - their ontological
distinction number:magnitude corresponding to
the antinomy discrete:continuous. Before
beginning to investigate some of the
philosophical questions raised in connection
with the changes in the concept of number, I
shall first give a very summary history of
the developments after the Greek era.

The Romans were primarily interested in
practical results rather than theoretical
mathematics and the continuing usage of their
number system in the 'dark' ages (making
multiplication and division extremely lengthy
tasks) meant that there was little
theoretical mathematical work in this period.
Its rebirth was an important element in the
phenomemon of the Renaissance. Theory was
stimulated by the introduction of Arabic
texts and Greek texts via Arabic
translations. The gradual adoption of the
Hindu-Arabic number system which contained a
sign for zero and was a consistent place
system, facilitated numerical operations.

It was in the sphere of commerce that this
number system was first introduced: the main
concern was correct, convenient operation
with numbers, not a theoretical foundation.
Since fractions arose in simple numerical
calculations, they were popularly considered
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numbers, i.e. the Greek discrete:continuous
number:magnitude distinction was bypassed. As
a result of the study of the Arabic texts
there was much interest in algebra, primarily
in solving polynomial equations; the terms
'cossike', 'surd' or 'absurd' numbers were
used variously for rationals, irrationals and
what we would now call the variable terms of

an equation - there was an implicit
assumption that polynomial equations were
determinate, that there was a definite

numerical solution waiting to be discovered
(or, as we would describe it, that the
existing number field was closed under the
operations used).

The use of the term 'number' for these cases
was disputed, in the first place by the
neoplatonists. The emergence of negative and
imaginary solutions caused further confusion.
There was in fact more difficulty in
accepting negatives than irrationalsl; the
negatives lacked the framework which the
Eudoxan theory of proportions supplied for
the irrationals. From the general questioning
as to the criteria for acceptance of
candidates for numberhood, the dominant
perspective which emerged seems to have been
a pragmatic one: operations with the new
number-like entities continued because they
were useful. Stevin's position was one of the
most coherent; amongst others he championed
the decimal notation for fractions and
consequently advocated the radical notion
that 'Number is not all discontinuous
guantity'. This was the vague beginning of
the idea of a number line, a different kind
of parallel between geometry and arithmetic
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from that of the Greeks. The existence of a
symbol for zero was of wvital importance in
this; Stevin and 1later Wallis argued its
equivalence to the geometric point, as
opposed to the Greek equivalence of the
'monas’' to the point. They were also both

concerned to be explicit about the
corresponding new status of 'one' - that it
should be considered a number, since,

according to Wallis, it answers the question,
'How many?'.

In the 17th century the question of the
conceptualisation of number was generally
secondary to problematics of the operational
developments. As a vzresult of the more
pragmatic attitude (revealing the beginnings
of a formalist attitude to mathematics)
negatives and imaginaries were wused 1like
other numbers in calculations because they
ultimately rendered correct results, even

though when +they emerged themselves as
solutions, these were regarded as
meaningless.

These operations and the corresponding
attitude were not validated wuntil +the 19th
century, when Hamilton elaborated the
congsistent algebra of complex numbers, and
negatives and imaginaries were accorded a
more 'intuitive', visual meaning in the
Gauss-Wessel representation of the complex
plane.

In the 18th century there had already been
attempts to prove the fundamental theorem of
algebra which implies that no new types of
candidate for numberhood could emerge from
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polynomial equations; but Euler then (in an
interesting reversal of the wusual order of
discovery preceding acceptance) postulated
the existence of those transcendental
numbers, i.e. that 'transcend the power of
algebraic methods'. It was in the 19th
century that first Liouville (in 1844)
demonstrated that a certain serial form would
yield transcendental numbers, and later
Hermite (in 1873) showed the transcendence of
e, and Lindemann (in 1882) that of = .

Both irrationals and +transcendentals slip
through the dense mesh of decimal fractional
notation for the number line and at the end
of the 19th century, Cantor developed a
theory of +transfinite numbers (cardinal
numbers of infinities) which included a proof
that the order of infinity of the continuum
was higher than that of the whole numbers
(and rationals). The development of the
theory of +these new numbers opened up
controversies that harked back to the Eleatic
paradoxes. Also, interestingly , a new
monadic structure emerges in that the
transfinite numbers are discrete: no-one has
yet managed to construct a set whose cardinal
number lies between that of +the natural
numbers and that of the real numbers, and
higher transfinite numbers are generated by
considering the set of subsets of a
transfinite set.

Now to return to some of the philosophical
guestions raised. First, before considering
any of the more particular questions, when
examining Greek mathematics we can not ignore
the context of the original mathematical
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concern, which takes us into contradictions
whose interplay has been a vital element in
the growth of the mathematical organism.

For the Pythagorean~Platonic perspective
(from which, rather than from the other Greek
schools of though, our mathematics mostly
derives) mathematics was intended primarily
as a metaphysical discipline; the aim was to
understand material reality as a
manifestation of divine truth, not to control
nature. The guiding principle was the order
(71déts ) of the whole; the foundation of their
metaphysics was a belief in the eternal
unity, the 'one', and they sought through an
understanding of changeless mathematical
relations to attain +to +the highest +truths
pertaining +to the eternal  reality which
transcends material reality.

For the Pythagoreans, the transcendental,
absolute +truth was immanent in material,
phenomenal reality; for Plato it lay behind
or above worldly reality - there 1is a
separation, an abstraction. For Pythagoras
mathematics contained the +truth; for Plato
(although there is some ambiguity about his
position) it seems that mathematics was a
step towards an appreciation of the truth.
For both, perception of the truth
necessitated a self-transformation: it is not
nature that hides, it is our vision that is
skew.

Since the time of the Greeks, mathematics has
been identified with truth, but the nature of
the truth sought has changed radically from
being a revelation of transcendent reality,
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to an undeniable, empirical statement,
'fact'® and even a system of tautologies; yet
paradoxically, the one constant element in
the idea of truth has been the quality of
being absolute, timeless, unchanging! The
underlying isues here touch the shared
boundary, the no-man's-land between
epistemology and ontology.

The Pythagorean-Platonic orientation was
primarily ontological. The Platonic dialectic
was a process to allow an ascent to a vision
of the form of the good, a transcendent,
subjective, absolute certainty, which was
essentially incommunicable to others who did

not take part in the ascent. Proclus'
neoplatonist exposition of an ‘'ascent from
more partial to more universal

understandings' by which 'we climb up to the
very science of "being" in so far as it is
"being"'5 was extremely influential in the
Renaissance; but the telos behind this ideal
of a science transcending other sciences was
profoundly different from the original
Platonic goal. Plato's vision of a unified
metaphysical science was split. The
subjective, metaphysical orientation was
preserved in the opera of the alchemists; but
these, for various reasons including the
danger of persecution, largely remained
privatised and that mode ultimately
disappeared. Recently such works are being
re-evaluated in terms of their effects on the
new, emergent science - the rival mode which
triumphed.

It is, of course, the Cartesian philosophy
which most clearly indicates the reversals of
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the classical Greek approach - as well as the
continuities. Plato's dialectic works through
accepted statements to attain a higher 1level

of absolute, subjective certainty: with
Descartes' epistemological orientation,
hereverses this order to found his

rationalism on subjective certainty of a low
level, then, taking mathematical reasoning,
the 'geometric' method as his model, he
believes it possible to proceed via clear-cut
self-evidences, +to accumulate a higher level
of knowledge that is explicité articulatable
and still absolutely certain.

As Husserl’ points out, there is a
fundamental inconsistency between Descartes'’
radical starting-point, +the epoche, and the
rationalist system that he develops (the
former destined ultimately to wundermine the
latter); his bracketing is incomplete -
belief in the Galilean, mathematical book of
nature is not submitted. Before following any
further the theme of the nature of
mathematical truth and certainty, attempting
to unravel the cross-threadings of the
empirical and transcendental,
objective:subjective, relative:absolute etc.,
I shall return to consider the development of
the number concept and its relation to the
more general mathematical conceptualisation.

For the Pythagorean and Platonic
perspectives, the gquestion of the ontological
status of number and mathematical concepts is

of prime importance. In the original
Pythagorean conceptualisation this status is
clear: all is number, where number is

discrete, heterogeneous, substance and form,
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guality and quantity. The existence of the
irrationals, which made this early vision of

a mathematical universe untenable, was
encompassed in Plato's hierarchy of levels of
reality from the illusory, changeable,

material world +to the real, metaphysical,
changeless realm of ideal forms, where the
form of the good presides. The
discrete:continuous, number:magnitude
contradiction could be contained, if not
clarified, in an ontological distinction. The
beginnings of the modern conception of number
can be seen in Aristotle’'s argument against
the Platonic idealist conception, where he
maintains that the unit is merely the measure
of number. He also questions the equivalence
of the point and +the monas, but not the
number:magnitude distinction. In this move
away from a metaphysical, ontological
foundation we see the beginning of the
problematic of the status of number which
became manifest in the Renaissance,
eventually leading to a re-opening of the
question as to the status of mathematical
concepts generally.

When the question of the conceptualisation of
number recurs in the Renaissance, we are at
an extremely interesting historical juncture,
since the problematic at this time could be
seen as being both caused and resolved by
pragmatism. As stated, fractions, as well as
'one' and zero had come to be regarded as
numbers in everyday commercial wusage, but
this state of affairs was not so different
from the everyday context of the Greek
mathematical philosophers. The difference was
that the Renaissance philosophies offered no
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perspective on guestions of the
conceptualisation of number, which only
became problematic in connection with the
algebraic developments.

Following Diophantus' wusage of the term
'arithmos' to represent the unknown in his
investigations, where he also accepted
fractional parts of the monas, it was assumed
that the polynomial egquations would vyield
numerical solutions. The strangeness of the
emergent solutions, which were irreducible
either to elements of the accepted number
domain or to irrationals which corresponded
to the Greek criterion of constructibility,
caused a guestioning of the earlier
unselfconscious pragmatism and a concern to
progscribe the limits of number: +the right of
fractions to numberhood was not questioned.

In retrospect, we might say that the
acceptance of fractions as numbers
necessitated the eventual acceptance of the
other candidates for numberhood: but that is
to assume the concept of a number field, a
number system which is closed under certain
operations. This criterion, which is linked
with a formalist understanding of
mathematics, emerged very slowly. It was not
until the 19th century that it came to be
articulated more explicitly and receive more
general acceptance, although it began to
bemanifest in the consciously pragmatic
attitudes adopted in the face of the new
offspring of number. Until that time widely
divergent views continued to be voiced as to
the status of the negatives, imaginaries and
irrationals; such views decreased in
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importance as the operational importance of
the unplaced entities increased.

In the Renaissance climate of economic
expansion (as opposed to the relatively
static Greek economy) with i1its need for
improved arithmetical techniques, and the
belief in an effective, technologically
oriented science based on the use of
quantitative mathematical models, number was

generally seen as quantity; the Greek
ontological prohibition of fractions was no
longer relevant, indeed it was scarcely

considered; fractions appeared 'natural' (the
Greek view of them as ratios survived in the

nomenclature 'rational' numbers); negatives
were considered variously 'absurd',
'impossible’, 'fictitious' and 'false',
whilst the term 'imaginary' was coined

dismissively by Descartes, complex numbers
having been described earlier as 'useless'
and 'sophistic'.

All these terms are revealing as regards the
implied grounds for accepting candidates for
numberhood; on the one hand there is an
agsumption of a sane, possible, real, true
area prescribed by the accepted, positive,
rational numbers (whose ontology is, at that
time, not questioned); then, the term
'useless' betrays an incipient teleology in
mathematics, it signals the beginnings of a
more conscious pragmatism.

In the first place it 1is a contradictory
pragmatism: Cardan denigrates imaginary
numbers as 'useless' and continues to use
them ('putting aside the mental tortures
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involved')g; theoretical attitudes oppose
operational practice. The practice continues
and in Girard's position we see the
theoretical attitude reversed +to form a
coherent pragmatism: he asks himsel£'®:

Of what use are these impossible solutions
[complex roots]? I answer: For three
things - for the certitude of the
general rules, for their wutility, and
because there are not other solutions.

He frames his question pragmatically and
answers himself partially tautologically; his
futher justification reveals a rudimentary
formalism. From the perspective of modern
rigour, this claim of certainty, and the
assumption that the extant solutions complete
the system, is unwarranted. The claim of
certainty accompanied the wuse of +the new
numerical offspring throughout the long
period of operation with them while their
status was not agreed, not determined. It is
only with the rebirth of rigour that the
notion of certainty begins to become more
specific. In the formalist doctrine, it
finally returns to revive its original Greek
counterpart: non-contradiction again becomes
the paradigm, but the locus of fundamental
validation is reduced; for the Greeks it was
a consistent, global ontology; in the modern
age completeness is required not in a global
philosophy, rather it %s sought in the local
mathematical microcosm - the original
formalist demand being +that a mathematical
system be consistent and complete. Girard's
theoretical attitude articulated the practice
of the time; most mathematicians continued to
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practise pragmatism in contradiction with
their theoretical positions.

The status of the irrationals was also re-

evaluated. Some mathematicians (including
Pascal and Barrow) wished to salvage the
number:magnitude distinction although its

original foundations were no, longer wvalid
ontologically or technically. But there was
also an attempt to articulate a new criterion
for the acceptability of candidates for
numberhood, more in keeping with the
guantifying spirit of the Renaissance, based
on the extension of decimal notation to
include fractions: Stifel first gives the
pragmatic reasons that might be given for
accepting irrationals as numbers:

Since, in proving geometric figures, when
rational numbers fail us, irrational
numbers take their place and prove exactly
those things which rational numbers could
not prove.... we are moved and compelled
to assert that they +truly are numbers,
compelled that is, by the results which
follow from their use - results which we
perceive to be real, certain and constant.

But then he argues that:

Other considerations compel wus to deny
that irrational numbers are numbers at
all. To wit, when we seek to subject them
to numeration [decimal representation]
e we find that they flee away
perpetually, so that not one of them
can be apprehended precisely in itself

Now that can not be called a +true number
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which is of such a nature that it lacks

precision... Therefore, just as an
infinite number is not a number, so an
irrational number is not a true number,
but 1lies. in a kind of a cloud of
infinity.

His subsequent argument that 'true' numbers
are either whole numbers or fractions 1is
circular, in that the decimal fractionail
notation is specifically constucted so as to
express fractions in terms of ordered
sequences of integers, and, in fact, contains
a technical inconsistency in that he omits to
point out the distinction between the
ultimately predictable iterative procedure by
which fractions whose denominators are prime
to ten, when expressed in decimal notation,
similarly recede to infinity, and the
unpredictable course of the irratiocnals in
such a representation. But in his attempt to
abstract a criterion for acceptance of
candidates to numberhood, that of precise
locatability in terms of the extended decimal
notation, he reveals an awareness of the
problematic of the 1limit concept which is
ignored in Stevin's later conception.

Ultimately Stifel's 1locatability criterion,
like Descartes' argument for the 1imited
acceptance of negative numbers (that
equations with 'false', i.e. negative, roots
can be transformed so as to yield positive
roots), does not come to terms with the issue
of the conceptualisation of number, but
rather refers back to a presupposed, accepted
number domain. In fact, Descartes does deal
more directly with some important aspects of
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the number concept, but before discussing
these we must first review Stevin's position.

Stevin's conception of his mathematical task
as part of a general project to recover the
knowledge of a 'wise age' that he believed to
have existed before the Greeks (whose
culture he sees as the beginning of a
'barbarous age') compelled him to explicate
thoroughly his radical conceptualisation of
number, with reference to the surviving
formulations of the Greeks.

Stevin was not the first to use +the decimal
fractional notation (Vieta and Bombelli
amongst others used versions of such a
notation) but his Disme, which functioned as a
teaching manual for calculating with decimals
and as propaganda advocating decimal
standardisations of measures, was extremely
influential™™ in spreading the use of the
notation which clearly plays a very important
role in determining his conception of number.

His first definition of number (articulating
the spirit of the time) is 'that by which the
guantity of each thing is expressed'.1 He
then posits an analogy between number and
continuous, homogeneous matter, stating his
fundamental premise that the part is 'of the
same mg}erial'('de mesme matiere') as the
whole. Then, using the classical definition
of number as a multitude of units, he argues
that the unit, being a part of a multitude of

units, is of the same material as the
multitude of units, but the material of the
multitude of wunits is 'number', so the

material of the unit, and thus the wunit
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itself, is 'number' - not the principle or
beginning of number (as it is in the
classical Greek view). He remarks by way of

illustration that to deny this 1last step
would be like denying that a piece of bread
is bread; the devaluation of the integers
(which he later makes explicit) 1s already
clear - this conception of number does not
allow for the qualitative difference between
a loaf of bread and a pile of crumbs!

For Stevin, the unit is divisible (he invokes
Diophantus); =zero is now the beginning of
number and the analogue of the geometric
point. He states explicitly that 'number is
by no means discontinuous'; number and
magnitude are now so similar as to be almost
identical; he attacks the use of the terms
'absurd', 'irrational' for incommensurables -
any root of a number is a number, since it is
a part of a number. He retains a disinction

between 'arithmetic' number, 'one expressed
without an adjective of size' and 'geometric'
numbers, 'quadratic’', 'cubic' numbers etc.:

any 'arithmetic' number may be a 'geometric'
number, but when the numerical value is not

known, 'geometric' numbers represent the
indeterminate gquantities in algebraic
calculations, and are denoted by , ,
. 2 3

etc. (where we would write x, x°, x
etc.); he thinks not in terms of 'variables',
but of 'unknowns' which are still

geometrically cloaked.

Stevin, with his practical background, was
primarily interested in determinate solutions
to problems; Vieta's approach was different.
Like Stevin, he saw his work as a recovery of
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lost knowledge not as creationm, he saw in
the study of polynomial equations the
possibility of a general mathematical method.
In his ars analytice (the explicit telos of
which was 'to leave no problem unsolved') he
extended the Diophantine algebra (which he
saw as revealing the methods which Diophantus
unconciously used but concealed), extracting
general methods from Diophantus' particular
cases. In the symbolic notation which he
began to develop for polynomial equations
(although in the ars analytice he does not
use a sign for equality; he verbalises the
progressive steps; it 1is not our modern

equation form), the unknown is clearly
distinguished by letter. He retains the terms
'‘side’, 'square’, 'cube', 'square-squared’

verbally and refers to the quantities with
which he deals, as 'magnitudes’'.

We are now 1in a position to return +to
Descartes (in whom we again find the Dbelief
in an earlier, more complete knowledgem).
Although the extent to which Descartes was
influenced by Stevin and Vieta is not clear,

his work could be seen, both on a
mathematical, operational level, and on a
more general philosophical level, as

combining and extending theirs.

As regards mathematics 'proper', it is
Descartes who 1liberates algebra from its
internal geometricisation (which had become
increasingly a relic from the Greek
formulation) both on an elemental, notational
level - our modern algebraic notation derives
from his synthesis of Vieta's literal
notation for the indeterminate term and
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Stevin's use of numbers to denote the power;
and on an operational, conceptual level -
considering the guantity as distinct from the
geometric status (as Stevin had done for
determinate number, but not in the case of
the variable) - he explicitly stategs that a
product of 1lines can be a line.* Then,
having purged algebra of its geometric
residue, he 1is able to establish a new
relationship, at a higher structural 1level,
between geometry and the algebra of
dimensionless measure, a correspondence
between equations and geometric curves; he
forms a new synthesis, a new mode, coordinate
geometry.

Degscartes himself saw this as an example of
the practical effectiveness of his general
method which was aimed at the 'mathesis
universalis', a general science of order and
measurement, that could be seen as a further
stage in achieving the generality which Vieta
envisaged in his ars analytice. Descartes
founds his mathesis on a substantiation of
Stevin's number-matter analogy; it 1is no
longer seen as a metaphor; on the basis of
his psycho-physioclogical model Descartes
argues that there is an exact, real
correspondence between number and matter;
extension is both symbolic, as the object of
general algebra, and real, as the substance
22
of the corporeal world.

Descartes thus supplies a philosophical and
technical foundation for the budding science,
in his articulation of the rationalist method
and his identification of the basic subject
matter of abstract mathematics with that of
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science, the investigation of the material
world, and in his structural quantification
of Euclidean space which prepares the ground
for the differential calculus, a mathematical
technique for dealing with mechanical,
guantitative change. A space ordered by a
continuous (potentially infinitely
divisible) measure was a necessary
prerequisite for this development, as was a
homogeneous time - a vitally important factor
in the growth of Renaissance science. The
homogeneityzimposed upon space was imposed
upon time. Without the denial of the
essential difference between these two basic
orders of the 1life-world, +the mechanical
mathematics of the differential calculus is
unthinkable. This is the crux of the Eleatic
paradoxes. The Greek mathematical solution
was to homogenise space and ignore time, deny
change. The mathematical mode engendered
could entertain an integral calculus, the
method of exhaustion for accumulative
approximation +to the space contained by a
curve (line or surface), but not
investigation of a point phenomenon.

In the Renaissance, time enters as a
concious, explicit concern of science: the
static, Greek episteme gives way to
Renaissance, time-, effect-oriented science.
In mathematics the antinomy
determinate:indeterminate overlays the
discrete:continuous contradiction which
dominated Greek mathematics. The Greek
conception of number was architecturally
spatial; number was composed of geometrical
arrangements of monads, indivisible wunits.
The elements of arithmetike embodied spatial
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forms. Time is introduced into the conceptual
material of mathematics (and number) through
polynomial equations (as distinct from its
explicit, external entry as an object of
study). Originally they were seen as
determinate; their subject was the 'unknown'
which was specified geometrically. The change
in perspective by which the 'unknown' became
the 'variable' simultaneously recognised time
and stepped outside of it; the determinate
solution became subordinate to the vision of
the form of the possibilities of solution.

This change in perspective is already
inherent in the new notion of number as
articulated by Stevin; number is homogeneous
material, a conceptual object and the
material which constitutes +the object. The
discrete:continuous contradiction appears to
be effaced. Stevin in fact argues the
relativity of incommensurability on the
grounds that a length that is commensurable
in one place, could be incommensurable in
another with a different standard unit; this
fact, which is due to the relative nature of
dimensional units, does not eradicate the
contradiction inherent in number. Stevin's
formulation articulates the intuitive notion
of his time; his concept of number is closer
to the Greek magnitude, continuous measure
(viz. Vieta's use of the term 'magnitude' for
the subject of a polynomial egquation); the
absoluteness of the unit, the Greek
foundation for discrete, heterogeneous number
is undermined. The original integral decimal
notation emphasised the homogeneous aspect of
the integers, the repetitive procedure for
approaching the potential infinity of
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succession; the extension of the notation in
the other direction gives an intuitive sense
to the infinity of density, again emphasising
the homogeneity. The decimal fractional
notation, with its indefinitely close
approximations to incommensurables encourages
the 1illusion of a smooth elision from
discrete to continuous, with the concomitant
devaluation of the integers. Descartes'
explication of the latent idea of number-line
completes the image. Decimals are originally
constructed from integers; once they are
constructed, +the integers appear to be made
up of decimals as (evanescent) building
blocks or (a more coherent view permitted by
Descartes' model) to be arbitrary places on a
number line. In fact, at each decimal place
one meets only another level of units; the
place of transition from discrete to
continuous continually recedes; one never
confronts the essential difference between

exact numbers and incommensurables; it is
merely postponed indefinitely. Smooth number
glosses over the integer:magnitude

distinction; the Greek hypostatisation which
had contained the discrete:continuous duality
by keeping the two poles rigidly apart is now
dissolved. Its continuing relevance to
considerations of the integers is obscured.
It appears temporarily to have been banished;
but it is merely transferred, transformed
into an internal contradiction of the

expanded number concept, which makes it
possible for the calculus to approach the
limit point - under probings the

contradiction again explodes.
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With the suppression of the discrete, the
contradiction undergoes a modal shift: the
place formerly occupied by the discrete - the
number object - now houses determinate,
finite number, any specific representative of
number the material, +the continuous, which
represents the potentially infinite
divisibility and/or range possible for any
determinate number; it is simultaneously the
material from which any determinate number is
formed and the homogeneous number 1line (or
space) from which a determinate number may be
chosen. Stevin states that every 'arithmetic'
(determinate) number is the beginning of
'geometric' (indeterminate) number, Jjust as
zZero i% the beginning of 'arithmetic'
number.” Whereas the Greek number:magnitude
distinction was a static, horizontal dualism
fixed in space, the new concept - of number
implicitly contains the notion of a variable.
The contradiction operates between the
levels, determinate and indeterminate; it is
vertical rather than horizontal, dialectical
not static. The new model fuses space and

time in common homogeneity: determinate
number is both formed of, and chosen from
homogeneous, potential number; the Greek

spatial composition of number persists in the
identification of a determinate number with a
line segment; but a determinate number is
also a place, a point on a number line which
may be singled out like a moment of time from
which the probable past and the possible
future stretch endlessly away. The
implications of +this mode of fusion are
immense and warrant further discussion, but
immediately we see the root of the
problematic that concerned Miller and
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Meyerson; the new mathematics initiated in
the Renaissance can deal with time by
reducing it to quantified space; the past and
future are arbitrary in this schema (unlike
the life-world) - dependent on an arbitrary
origin; the 1illusion 1is created of the
possibility of stepping outside time (an
illusion which, like the fiction of Euclidean
space itself, 1is valid only within certain
limits); a framework 1is created for the
quantitative description (and thus possible
prediction) of mechanical change, but the
essence of experienced time, real change, the
emergence of the qualitatively new, still
eludes description. This problematic has
recently been approached within mathematics
by René Thom; his catastrophe theory can
provide qualitative models for changes of
state within a certain nexus, but he himself
considers that +the theory is essentially
incapable of adaption to gquantification for
predictive scientific purposes. The
Renaissance vision of knowledge that is Dboth
certain and effective is reaching the 1limits
of the mode it engendered.

It would be worthwhile to return to examine
more closely the roots of present
mathematical problematics in the Renaissance
incunabular of our mathematical mode, as well
as the continuities and reversals from the
original Greek seeds. There are, in fact
several interesting parallels between the
Greek beginnings and the Renaissance rebirth.

The Pythagorean mathematical inspiration was
the vision of a numerical description of the
world, where 'number'’' was discrete,
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heterogeneous and in some way material. This
thesis met with contradiction in the form of
the irrationals; the idea of number as

discrete was not sacrificed - that would have
meant abdication of metaphysics as a change-
less reality; but a new rigour was necessary
to ensure non-contradiction (equated with
certainty); on the one hand it was necessary
to supply a foundation for operation with
irrationals; on the other, the general form
of mathematical demonstration was tightened.
In the Renaissance twist of the spiral, there
is still a wvision of a numerical world-

description - 'number' is now abstract and
continuous, having subsumed the
discrete:continuous antinomy - but the new

impetus derives from the perception of
mathematics as an epistemological method, a
general art for solving problems.

The Pythagorean vision is of an isomorphism
between the realm of discrete number and the

life-world; the demonstrative method is
secondary. Descartes reiterates this vision,
with continuous numbexr replacing the

discrete, interposing a level of abstraction;
he reverses priorities - his epistemological,

rationalist method modelled on the
mathematical proof form is primary; he also
reverses the role of the form - in its

original context the theorem precedes the
proof, its direct function is static (it 1is
only through a further act of reflection on
the internal structural components of the
proocf, an involution, in accordance with
Lakatos' proof analysis, that it receives a
function in generating new understandings);
when Descartes appropriates the form he
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transforms it into an epistemolog}cal method
whose function is generative. In these
reversals, the monadic structure retains its
primacy: for the Pythagorean, it is the
ontological monadology, +the unit elements,
the prime constituents of the phenomenal
world; for Descartes, it is epistemological -
the constituents are the clear and distinct
ideas which accumulate to form a body of sure
knowledge.

There is a further parallel, both with regard

to content and history, between the
(Pythagorean) Platonic metaphysics and the
Cartesian rationalist science. Both deny
real, qualitative change, the first by

denying time, the second, by neutering it;
both proved successful within 1limits; their
very success caused the ideas +to become
embedded as ideology, so that even when the
limits of their validity are approached and
the original doctrines are questioned, their
consequences still survive in mathematical
praxis of which the roots have been
forgotten, sedimented in history.

The rebirth of Greek mathematics in Western
culture is simultaneously a completion and an
inversion. The development of the decimal
notation fosters the new concept of
homogeneous number, allowing the subsumption
of time into mathematics. The initial
consistent place system, of course, depends
on the existence of a symbol for zero, and it
would be worthwhile considering the further
implications of this, for instance, the
change of meaning that occurred in the
cultural transfer of =zero from its Hindu
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origins, where there is a sense of a full
nothingness, to a society where 'nothing' is
a mere absence - where 'nature abhors a
vacuum' etc. What are the implications of our
conception of =zero and those of the
alternative? Such questions obviously relate

to considerations of the calculus.
Interestingly Buddhist logic, beginning from
almost the opposite metaphysics to the

Platonist, with the point-instant as the
basic reality, came very close to notions of
a differential calculus.

The mode of the symbolic notation developed
in the Renaissance could obviously be
examined in more detail. For instance, before
the Renaissance, the equation was not the
paradigm of mathematics. The primacy of the
equation (which has only very recently come

to be gquestioned) internalises +the mode of

the axiomatic method - sta}ic consolidation
of atemporal positivities. The question of
overdetermination of mathematical symbols

needs to be investigated. When we begin to
look at mathematics as a language, we see
that the concept of number which emerges in
the Renaissance is adjectival with respect to
ordinary language. The number language then
bears a skew relation to ordinary 1language,
since these adjectives are +then accorded a
substantive function in mathematical grammar.
The situation 1s, of course, wvastly more
complex -~ mathematical grammar is not
isomorphic to the grammar of ordinary
language, but the attempt to understand
mathematics in this way is wvaluable - the
divergence between mathematical language and
ordinary language only began with the
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development of symbolic notation in the
Renaissance, before that time mathematics was
still predominantly verbal. In classical
Greece mathematical language was embedded in
ordinary language; to understand mathematical
objects was to 1locate them in a global
ontology; numbers attained reality as
objects, and Yo} could coherently be
understood as substantives, by embodying
geometric forms. In the Renaissance
mathematical operations are symbolised;
mathematical 1language is thus formally
separated from verbal 1language. It has an
internal coherence, being now composed
homogeneously of symbolic elements; it is
free to follow its own dynamic according to
its own, internail, grammatical and
syntactical laws. In the new reflexivity of
mathematics the number concept is extended by

internalising mathematical operations; an
operational classification of number
supersedes the Greek geometric
classification.

In the initial phases of growth of this mode,
as Klein says:

the whole complex of ontological problems
which surrounds the ancient concept of
number loses its object in the context of
the symbolic conception, since there is no
immediate occasion for questioning__ the
mode of being of the 'symbol' itself.

The extent of the rupture is not, at first,
recognised; Descartes' identification of the
mathematical object-world with the perceived
material world and Kant's attempt to refound
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it metaphysically, is not called into
guestion until the development of consistent
non-Euclidean geometries, causing attempts to
justify what has by that +time become the
status quo - conventionalism, logicism,
formalism. These explicitly refuse to
consider the problematic of the relation
between mathematics and the life-world,
attempting instead to create a Frankenstein's
monster of mathematics, a self-sufficient
entity whose judgment is more certain than
that of its creators. We must return to
examine more closely the ways in which the
various attempts failed to achieve their
original stated aims, but the very fact of
the failures must cause a re-examination of
the basis for such attempts. When
Wittgenstein questions the motivation behind
the foundations fervour, he asks:

But what was the attempt made for? - Was
it not_due to an wuncertainty in another
place?

Is that 'other place' not the questionable
place of mathematics itself in +the life-
world, entailing consideration of such
problematic concepts as intuition and
certainty which bridge the objective and
subjective? The problematic posed for the
Greeks by the symbolic status of number, as
to its ontological reality, was temporarily
submerged as the whole of mathematics assumed
a symbolic character. Thus, the problematic
now recurs on a larger scale, of the
ontological status of mathematics.



56



57

Notes to Section 1

1.

2.

Since I wrote this, Philip Kitcher (1983)
has begun to approach this area.

This has been abundantly demonstrated by
Becker (1927), Lakatos (1963/4), Fisher
(1966/7), Dessanti (1968), Foucault
(1970) and Grabiner (1974) amongst
others.

See Godel (1944).

This is a phenomenological term, cf.
Husserl (1970).

See, for example, Plato's Republic (Part
8, Book 7) and Farrington (1946) for his
reference to the 8th book of Plutarch's
Dinner-Table Discussions where Lycurgus
is mentioned as allowing geometry but not
arithmetic as a study in Sparta, because
of the preferable political implications
of the former.

See Husserl (1946) and Klein (1940). Also
Barfield (1979) in his essay 'The Force
of Habit' (particularly pp.69-79),
vividly describes the imprisonment we
experience as a result of our culture-
based mental habits. He also (like
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Pythagoras, Plato and Descartes amongst
others) emphasises that we need to go
through a certain self-transformation,
both to realise the extent of our
imprisonment and to begin to release
ourselves.

See especially Fisher (1966/7).
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Notes to Section 2

1.

Bourbaki (1969) is one of the clearest
examples of this Whig approach to the
history of mathematics. See Unguru (1975)
for a description of the results of such
a perspective on the history of Greek
mathematics.

See Kuhn (1962), particularly ch.1ll.

Wilder (1974) attempts to come +to terms
with this issue. See also Unguru (1975).

D.L.Miller (1948).

See Husserl (1970) and Barfield (1957).
I think the basic fallacy underlying this
(usually unconscious) assumption, is
pinpointed by a Sufi saying which Keith
Critchlow quoted in a Wrekin Trust talk
in June 1986, namely, 'Conclusive is not
necessarily exclusive'.

The fact that one explanation of a
phenomenon works well does not imply that
it is the only possible explanation (that
it is true and all others are false). A
simple example (which is nonetheless
valid) is that of the picture (often seen
in textbooks on the psychology of
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perception) of two black head profiles
facing each other, separated by a white
vase outline. It is not a case of
either/or; both views are wvalid.

See Koyréb(1957).

See Wittgenstein (1956), Cameron (1970)
and Bremer (1973).

Klein (1940).

Husserl (1970). See also the discussion
of nomological and eidetic disciplines in
Husserl (1913).

Husserl (1929).

See Lakatos (1963/4) and Polya (1954).
Lakatos demonstrates this process of
increasing inclusion. See also Whiteside
(1960/2).Einstein with respect to Newton
is another clear example. It is
interesting and unfortunate that although
the more inclusive concepts or theories
do not contradict earlier more partial
ones, yet they are usually seen at first
as threatening.

Szabd (1969).
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See Szabd (1969). See also Whiteside
(1960/2) for a discussion and
illustrations of this shift as it
affected mathematical proofs from the
17th century into the 18th. The guestion
of the validity of proof and the meaning
of proof obviously recurs now with extra
bite with the computer proof of the 4-
colour theorem and the collaboration
proof of the classification theorem for
finite groups.

T shall take this opportunity to discuss
an area which I' could, perhaps, have
brought into the main text. When I read
Szabd (1958) on the shift from
illustrative proofs to more strictly
logical ones, it made me wonder when the
term 'demonstration' was replaced by
'proof'. (I have not yet found out and I
would be grateful to anyone who does know
if they would get in touch with me to let
me Know.) The term 'demonstration'
implies the attempt to convince someone;
the term 'proof' implies certainty on the
part of the prover. The term 'proof'
assumes that there is an objective truth
or objective rationality independent of
any subjective consciouness assessing
the rational process.
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Szabd (1969).

For example, the technical consequences
of some of Kronecker's arguments (e.g. on
Aristotelian logic and on the centrality
to mathematics of the natural numbers)
were fully realised only in the work of
Brouwer and the intuitionists.

It is ironic that Aristotle was clear
about the 1limits of wvalidity of his
logic; it is those who have wused it
subsequently who have implicitly assumed
it to have global validity.
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Notes to Section 3

1.

This is certainly what the Lowenheim-
Skolem theorem says.

Or even work in the philosophy of
mathematics. One exception is Becker
(1927).

This attitude which has been shared, in
one form or another, by all the great
figures in modern philosophy of
mathematics from Frege (for whom 'Wert-
verlaufe' take the place of sets)
onwards, has been criticised by Wang who
has pointed out that no substantial
reasons have been given for supposing
that 'numbers evaporate while sets are
rocks' (Wang, 1974, p.238).

See also the more general criticisms of
'foundationalism' in Smith (1976) and the
references given there.

Wittgenstein (1956) p.106 (II-82).

The distinction made by Klein (1968)
between number theory and arithmetike has
some validity and 1leads to certain
interesting questions but they are not
immediately relevant to the present
discussion.
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For example, as Aristotle tells us,
'linear’', 'plane' etc. (Metaphysics,
A.14.1020a35-b8).

See Dobbs (1975) who shows that Newton's
alchemical work preceded and was
concurrent with his scientific research.
It was previously assumed that he only
became an alchemist 1later in his 1life
when he had completed his scientifically
acceptable work; this assumption made it
possible simply to dismiss the
alchemical work as the product of his
dotage.

Aristotle, Metaphysics, A8, 990a 3f.
Aristotle, Metaphysics, M6, 1080b 19f.

The importance of unity, oneness,
wholeness, 1is beginning to be recognised
again with the growth of holistic
approaches to knowledge. In biology,
clearly, the whole is greater than the
sum of its parts. I believe that we also
need to begin to investigate 2-ness, 3-
ness etc. in similar ways to those
indicated by M.-L. wvon Franz (1974),
using the wealth of modern mathematical
knowledge, mostly logistike, to uncover
the corresponding arithmetike.
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These issues are discussed in detail by
Becker (1927),pp.129-148 and pp.199-213.
Szabdé (1958),pp.118-20.

See Klein (1968) for more detail.
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Notes to Section 4

See Becker (1927) and Kline (1972).

See Becker (1927), Cornford (1939), Klein
(1968). The shift in attitude is clear if
we look at the original meaning of
'theory'; as Russell says (1971,p.52)
'this was originally an Orphic word,
which Cornford (From Religion to
Philosophy) interprets as "passionate
sympathetic contemplation”. In this
state, he says, "The spectator is ident-
ified with the suffering God, dies in his
death, and rises again in his new birth."

For Pythagoras, the "passionate
sympathetic contemplation” was
intellectual, and issued in mathematical
knowledge.'

The term 'mathematics' was coined in
Pythagoras' school, 7o uabfiuata (ta
mathemata) meaning 'those +things which
have been learned'. Given the religious

nature of the Pythagorean school, it 1is
certainly arguable that the fundamental
learning concerned the spiritual
development of the disciples and what we
now consider to be the mathematics
deriving from that school were symbols of
that spiritual or psychological
development.
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It dis interesting that the original
etymological meaning of mathematics is so
open. This may partially account for one
problem which has dogged mathematical
philosophy for some centuries (although
it has not always been acknowledged),
namely that mathematics has been defined
by extension not by intension (to return
to a neglected but wuseful Aristotelian
distinction).

See Lewis Mumford, (1970). It is
interesting that the etymological roots
of 'fact' and 'fiction' are remarkably

similar; 'fact' derives from the Latin,
'facere’, to do, to make; 'fiction'
derives from the Latin, 'fingere', to

form, to fashion.
See Klein (1968).

In his Discourse on the Method of Right
Reasoning, Descartes says (Descartes,
1973, p-92), 'Those long chains of
reasoning, simple and easy as they are,
of which geometricians make use in order
to arrive at the most difficult
demonstrations, had caused me to imagine
that all those things which fall under
the cognizance of man might very 1likely
be mutually related in the same fashion;
and that, provided only that we abstain
from receiving anything as true which is
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not so, and always retain the order which
is necessary in order to deduce the one
conclusion from the other, there can be
nothing so remote that we cannot reach to
it, nor so recondite that we can not
discover it.'

I am not a Cartesian scholar, but in my
limited reading of and about Descartes, I
have found no comments on what seems to
me to be most remarkable: the 'geometric’
method was the deductive method, i.e. a
method to prove a theorem once it exists,
Descartes writes as if it were inductive,
i.e. a method of discovering or
generating new results.

Something I recently discovered from a
prominent Cartesian scholar was that
Descartes intended his method to be wused
only after his course of meditations had
been followed. This part of his teaching
appears to have been totally ignored by
his disciples in his lifetime and
subsequently.

Husserl (1970),pt.II, ch.18, p.79ff.
Kline (1972), p.253.

Ibid.
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Ibid.

My stance may be seen as somewhat naive,
but I consider that once +this reduction
in philosophical demand is recognised, it
can not be viewed other than as an
impoverishment.

Girard was an oddball in his time in his
attempt to be consistent; since then the
split between doing and being has
continued, deepened.

See Whiteside (1960-62).

Kline (1972), p.251.

Klein (1968), pp.186-90.

The Disme was written in the vernacular.
Stevin was one of the first to make this
important change.

Klein (1968).

Klein (1968). It is interesting that both
Stevin and Descartes assume matter to be

homogeneous.

Klein (1968).
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Klein (1968).

Descartes (1968) p.169.
Klein (1968) p.210-11.
See Meyerson (1930).

Klein (1968). I think that further
investigation of this profound conceptual
shift could yield greater understanding
not only of the ontology of numbers and
mathematics, Dbut also of the background
consciousness of our current
mathscientific culture.

As stated in note 6 of section 4, this
seems to have been more of a
misunderstanding on Descartes' part <than
a deliberate step.

See Adorno and Horkheimer (1944), p.7 ff.
for a description of the mutual mirroring
of mathematical and societal developments
e.g., 'Bourgeois society is ruled by
equivalence. It makes the dissimilar
comparable by reducing it to abstract
gquantities. To the Enlightenment, that
which does not reduce to numbers, and
ultimately to the one, becomes illusion;
modern positivism writes it off as
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literature. Unity is the slogan from
Parmenides to Russell. The destruction of
gods and qualities alike is insisted
upon. '

Klein (1968).

Wittgenstein (1956).
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